Abstract

Altered metabolism is implicated in the pathogenesis of beta-cell failure in type 2 diabetes (T2D). Plasma and tissue levels of ceramide species play positive roles in inflammatory and oxidative stress responses in T2D. However, oxidative targets and mechanisms underlying ceramide signaling are unclear. We investigated the role of CD36-dependent redoxosome (redox-active endosome), a membrane-based signaling agent, in ceramide-induced beta-cell dysfunction and failure. Exposure of beta cells to C2-ceramide (N-acetyl-sphingosine) induced a CD36-dependent non-receptor tyrosine kinase Src-mediated redoxosome (Vav2-Rac1-NOX) formation. Activated Rac1-GTP-NADPH oxidase complex induced c-Jun-N-terminal kinase (JNK) activation and nuclear factor (NF)-kB transcription, which was associated with thioredoxin-interacting protein (TXNIP) upregulation and thioredoxin activity suppression. Upregulated JNK expression induced p66Shc serine36 phosphorylation and peroxiredoxin-3 hyperoxidation, causing beta-cell apoptosis via mitochondrial dysfunction. CD36 inhibition by sulfo-N-succinimidyl oleate (SSO) or CD36 siRNA blocked C2-ceramide-induced redoxosome activation, thereby decreasing JNK-dependent p66Shc serine36 phosphorylation. CD36 inhibition downregulated TXNIP expression and promoted thioredoxin activity via enhanced thioredoxin reductase activity, which prevented peroxiredoxin-3 oxidation. CD36 inhibition potentiated glucose-stimulated insulin secretion and prevented beta-cell apoptosis. Our results reveal a new role of CD36 during early molecular events that lead to Src-mediated redoxosome activation, which contributes to ceramide-induced pancreatic beta-cell dysfunction and failure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.