Abstract

BackgroundThe effectiveness of autologous haematopoietic stem cell transplantation (auto-HSCT) in treating severe systemic sclerosis (SSc) is established; however, the necessity of purified CD34+ cell grafts and the appropriate conditioning regimen remain unclear. This study aimed to compare the efficacy and safety of CD34-selected auto-HSCT with unmanipulated auto-HSCT to treat severe SSc.MethodsThis study was a post hoc analysis of a phase I/II clinical trial conducted in Japan. Nineteen patients with severe SSc were enrolled. Peripheral blood stem cells (PBSCs) were mobilised with cyclophosphamide (4 g/m2) and filgrastim (10 μg/kg/day). Following PBSC collection by apheresis, CD34+ cells were immunologically selected in 11 patients. All patients were treated with high-dose cyclophosphamide (200 mg/kg) monotherapy as a conditioning regimen and received CD34-selected (n = 11) or unmanipulated auto-HSCT (n = 8). Changes in skin sclerosis and pulmonary function were assessed over an 8-year follow-up period. Differences in the changes, toxicity, progression-free survival (PFS) and overall survival were compared between patients who had received CD34-selected auto-HSCT and those who had received unmanipulated auto-HSCT.ResultsSkin sclerosis progressively improved after transplantation over an 8-year follow-up period in both groups, and the improvement was significantly greater in the CD34-selected group than in the unmanipulated group. Forced vital capacity in the CD34-selected group continuously increased over 8 years, whereas in the unmanipulated group it returned to baseline 3 years after transplantation. Toxicity and viral infections, such as cytomegalovirus infection and herpes zoster, were more frequently found in the CD34-selected group than in the unmanipulated group. The frequency of severe adverse events, such as bacterial infections or organ toxicity, was similar between the two groups. No treatment-related deaths occurred in either treatment group. PFS of the CD34-selected group was greater than that of the unmanipulated group, and the 5-year PFS rates of the CD34-selected and unmanipulated group were 81.8% and 50% respectively.ConclusionsCD34-selected auto-HSCT may produce favourable effects on improvement of skin sclerosis and pulmonary function compared with unmanipulated auto-HSCT. Use of CD34-selected auto-HSCT with high-dose cyclophosphamide monotherapy as a conditioning regimen may offer an excellent benefit-to-risk balance.

Highlights

  • The effectiveness of autologous haematopoietic stem cell transplantation in treating severe systemic sclerosis (SSc) is established; the necessity of purified CD34+ cell grafts and the appropriate conditioning regimen remain unclear

  • CD34-selected auto-HSCT may produce favourable effects on improvement of skin sclerosis and pulmonary function compared with unmanipulated auto-HSCT

  • This study indicates that CD34-selected auto-HSCT is superior to unmanipulated auto-HSCT in improving skin sclerosis and pulmonary function, with a minimum increase in serious complications, for the treatment of SSc

Read more

Summary

Introduction

The effectiveness of autologous haematopoietic stem cell transplantation (auto-HSCT) in treating severe systemic sclerosis (SSc) is established; the necessity of purified CD34+ cell grafts and the appropriate conditioning regimen remain unclear. This study aimed to compare the efficacy and safety of CD34-selected auto-HSCT with unmanipulated auto-HSCT to treat severe SSc. Systemic sclerosis (SSc) is an autoimmune disease characterised by vascular damage and fibrosis of the skin and internal organs [1, 2]. Autologous haematopoietic stem cell transplantation (auto-HSCT) was introduced for the treatment of SSc in 1996; since an increasing number of SSc patients resistant to conventional therapy have been treated using this method [8]. The ASTIS and SCOT trials revealed that auto-HSCT for early diffuse cutaneous SSc conferred a significant long-term, event-free survival benefit [17, 18], and all trials showed improved skin sclerosis and forced vital capacity and patient reported outcome measurements with the use of auto-HSCT [16,17,18]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call