Abstract

Objective clinical responses can be achieved in melanoma patients by infusion of T cell receptor (TCR) gene transduced T cells. Although promising, the therapy is still largely ineffective, as most patients did not benefit from treatment. That only a minority of the infused T cells were genetically modified and that these were extensively expanded ex vivo may have prevented their efficacy. We developed novel and generally applicable retroviral vectors that allow rapid and efficient selection of T cells transduced with human TCRs. These vectors encode two TCR chains and a truncated CD34 molecule (CD34t) in a single mRNA transcript. Transduced T cells were characterized and the effects of CD34-based enrichment of redirected T cells were evaluated. Both CD8(+) and CD4(+) T cells could be transduced and efficiently co-expressed all introduced transgenes on their surface. Importantly, more than fivefold enrichment of both the frequency of transduced cells and the specific anti-tumor reactivity of the effector population could be achieved by magnetic beads-based enrichment procedures readily available for clinical grade hematopoietic stem cell isolation. This CD34-based enrichment technology will improve the feasibility of adoptive transfer of clinically relevant effectors. In addition to their enhanced tumor recognition, the enriched redirected T cells may also show superior reactivity and persistence in vivo due to the high purity of transduced cells and the shortened ex vivo culture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.