Abstract

Thrombocytopenia is observed with a frequency of up to 2% in patients treated with glycoprotein (GP) IIb/IIIa antagonists. We recently provided evidence that thrombocytopenia is caused by antibody binding to drug-induced conformational changes in GP IIb/IIIa. Here, we report that a murine monoclonal antibody binds to GP IIb/IIIa in an antagonist-dependent manner and activates platelets. Platelet stimulation is associated with a disruption of the phospholipid asymmetry, resulting in the assembly of catalytic active intrinsic Xase and prothrombinase complexes. Further mechanistic studies revealed that this response is (I) mediated in cis, (II) not associated with the formation of prothrombotic microparticles, and (III) requires intact platelet signaling and (IV) is blocked by increases in cAMP. The prothrombotic response is not observed using F(ab')2 fragments and is blocked by incubation of platelets with neutralizing antibodies to the platelet FcgammaRIIa receptor (CD 32).Taken together, these observations suggest that GPIIb/IIIa antagonist-dependent antibody binding to the platelet fibrinogen receptor has the propensity to lead to CD32-mediated platelet activation and accelerated platelet clearance, leading to thrombocytopenia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.