Abstract

Hodgkin lymphoma (HL) is a type of B-cell lymphoma. To diagnose the subtypes, biopsies are taken and immunostained. The slides are scanned to produce high-resolution digital whole slide images (WSI). Pathologists manually inspect the spatial distribution of cells, but little is known on the statistical properties of cell distributions in WSIs. Such properties would give valuable information for the construction of theoretical models that describe the invasion of malignant cells in the lymph node and the intercellular interactions. In this work, we define and discuss HL cell graphs. We identify CD30(+) cells in HL WSIs, bringing together the fields of digital imaging and network analysis. We define special graphs based on the positions of the immunostained cells. We present an automatic analysis of complete WSIs to determine significant morphological and immunohistochemical features of HL cells and their spatial distribution in the lymph node tissue under three different medical conditions: lymphadenitis (LA) and two types of HL. We analyze the vertex degree distributions of CD30 cell graphs and compare them to a null model. CD30 cell graphs show higher vertex degrees than expected by a random unit disk graph, suggesting clustering of the cells. We found that a gamma distribution is suitable to model the vertex degree distributions of CD30 cell graphs, meaning that they are not scale-free. Moreover, we compare the graphs for LA and two subtypes of HL. LA and classical HL showed different vertex degree distributions. The vertex degree distributions of the two HL subtypes NScHL and mixed cellularity HL (MXcHL) were similar. The CellProfiler pipeline used for cell detection is available at https://sourceforge.net/projects/cellgraphs/. ina.koch@bioinformatik.uni-frankfurt.de Supplementary data are available at Bioinformatics online.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.