Abstract

This paper describes a novel channel estimation scheme identified as coded decision directed demodulation (CD3) for coherent demodulation of orthogonal frequency division multiplex (OFDM) signals making use of any constellation format [e.g., quaternary phase shift keying (QPSK), 16-quadrature amplitude modulation (QAM), 64-QAM]. The structure of the CD3-OFDM demodulator is described, based on a new channel estimation loop exploiting the error correction capability of a forward error correction (FEC) decoder and frequency and time domain filtering to mitigate the effects of noise and residual errors. In contrast to the conventional coherent OFDM demodulation schemes, CD3-OFDM does not require the transmission of a comb of pilot tones for channel estimation and equalization, therefore yielding a significant improvement in spectrum efficiency (typically between 5-15%). The performance of the system with QPSK modulation is analyzed by computer simulations, on additive white Gaussian noise (AWGN) and frequency selective channels, under static and mobile reception conditions. For convolutional coding rate 1/2, the results indicate that CD3-OFDM allows one to achieve a very fast adaptation to the channel characteristics in a mobile environment (maximum tolerable Doppler shift of about 80 Hz for an OFDM symbol duration of 1 ms, as differential demodulation) and an E/sub b//N/sub 0/ performance similar to coherent demodulation (e.g., E/sub b//N/sub 0/=4.3 dB at bit-error rate (BER)=2/spl middot/10/sup -4/ on the AWGN channel). Therefore, CD3-OFDM can be suitable for digital sound and television broadcasting services over selective radio channels, addressed to fixed and vehicular receivers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.