Abstract

Hydrogen sulfide is a highly toxic molecule to human health, but high-performance detection of it remains a challenge. Herein, we report an ultrasensitive photoelectrochemical (PEC) sensor for H2S by modifying indium tin oxide (ITO) electrodes with Cd2+-doped amorphous TiO2 hollow spheres, which are prepared by templating against colloidal silica particles followed by a cadmium-sodium cation exchange reaction. The amorphous TiO2 hollow spheres act as both the probing cation carrier and the photoelectric beacon. Upon exposure to sulfide ions, the photocurrent of the functionalized photoanode proportionately decreases in response to the formation of CdS nanoparticles. The decreased photocurrent could be attributed to the mismatching bandgap between the amorphous TiO2 and CdS nanoparticles: the photoexcited electrons and holes from amorphous TiO2 are transferred to the conduction band and valence band of CdS, respectively, and then recombined. The decrease in photocurrent is linear with the concentration of sulfide ions in the range from 1 to 10 000 pmol L-1 with a detection limit of 0.36 pmol L-1. Enabled by a unique sensitization mechanism, this PEC sensor features excellent performance in a wide linear range, high selectivity and sensitivity, high stability, and low fabrication cost.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.