Abstract

Myocardial edema mediated by endothelial dysfunction plays an important role in sepsis-induced cardiomyopathy (SIC); however, its mechanism is unclear. The current study aimed to provide evidence on the cardioprotection of CD1d-dependent natural killer T (NKT) cells and clarify the possible mechanism in a mouse model of sepsis. Wild-type (WT) and CD1d-dependent NKT-cells inactivation (CD1dko) mice were subjected to sepsis induced by intraperitoneal injection of lipopolysaccharide (LPS). The NKT-cells number and CD1d expression were both increased in the hearts and blood of WT mice after LPS treatment. Compared with WT mice, CD1dko mice exhibited remarkably accelerated LPS-induced mortality, cardiac dysfunction, myocardial injury, endothelial apoptosis, microvascular damage, microvascular permeability and cardiac edema. Mechanistically, CD1d deficiency further increased LPS-induced accumulation of T lymphocytes in the myocardium and upregulation of IL-6 protein levels. Administration of an IL-6 neutralizing antibody to CD1dko mice improved cardiac dysfunction, myocardial injury and edema induced by LPS. Our study identified that CD1d-dependent NKT-cells inactivation exacerbated SIC via T lymphocytes infiltration and IL-6 production. Hence, activation of CD1d-dependent NKT cells may be a potential candidate strategy for SIC treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.