Abstract

Multiple myeloma is a hematological neoplasm characterized by the accumulation of clonal plasma cells in the bone marrow. Its frequent relapse following achievement of clinical remissions implicates the existence of therapy-resistant myeloma-initiating cells. To date, results on the identity of myeloma-initiating cells have differed. Here, we prospectively identified a myeloma-initiating population by fractionating and transplanting patient bone marrow cells into human bone-bearing immunocompromised mice. Xenotransplantation of fractionated CD138(+)/CD38(high) cells from 40% of patients (8/20) led to a repopulation of CD19(+)CD38(low) or CD138(+)CD38(+) B-lineage cells in human bone grafts; and these grafts were clonally derived from patient myeloma cells. Meanwhile, CD19(+)CD38(low) xenografts were detected in human bone-bearing mice transplanted with CD19(+)CD38(low/-) B cells from 8 of 22 samples but were not clonally related to patient myeloma cells. Further fractionation and xenotransplantation of CD138(+)CD38(high) cells demonstrated that (CD45(low/-) or CD19(-)) CD38(high)/CD138(+) plasma cells, but not (CD45(high) or CD19(+)) CD38(high)/CD138(+) plasmablasts enrich for myeloma-initiating cells. Quantitative reverse transcription-PCR of two serially transplantable xenografts, which were CD19(-)CD138(+), revealed that they were Pax5 (a B-cell-specific transactivator)-negative. These results suggest that CD19(-)CD45(low/-) fully differentiated plasma cells enrich for long-lived and tumor-initiating cells whereas B cells or plasmablasts do not.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call