Abstract

Skin macrophages are critical to maintain and restore skin homeostasis. They serve as major producers of cytokines and chemokines in the skin, participating in diverse biological processes such as wound healing and psoriasis. The heterogeneity and functional diversity of macrophage subpopulations endow them with multifaceted roles in psoriasis development. A distinct subpopulation of skin macrophages, characterized by high expression of CD169, has been reported to exist in both mouse and human skin. However, its role in psoriasis remains unknown. Here, we report that CD169+ macrophages exhibit increased abundance in imiquimod (IMQ) induced psoriasis-like skin lesions. Specific depletion of CD169+ macrophages in CD169-ditheria toxin receptor (CD169-DTR) mice inhibits IMQ-induced psoriasis, resulting in milder symptoms, diminished proinflammatory cytokine levels and reduced proportion of Th17 cells within the skin lesions. Furthermore, transcriptomic analysis uncovers enhanced activity in CD169+ macrophages when compared with CD169- macrophages, characterized by upregulated genes that are associated with cell activation and cell metabolism. Mechanistically, CD169+ macrophages isolated from IMQ-induced skin lesions produce more proinflammatory cytokines and exhibit enhanced ability to promote Th17 cell differentiation in vitro. Collectively, our findings highlight the crucial involvement of CD169+ macrophages in psoriasis development and offer novel insights into the heterogeneity of skin macrophages in the context of psoriasis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.