Abstract

Patients with asthenozoospermia often present multiple defects in sperm functions apart from a decrease in sperm motility. However, the etiological factors underlying these multifaceted defects remain mostly unexplored, which may lead to unnecessary treatment and unsatisfactory assisted reproductive technologies (ART) outcome. Here, we show that the protein levels of CD147 were lowered in sperm obtained from asthenozoospermic infertile patients exhibiting defects in both sperm motility and the acrosome reaction. Whereas CD147 maintained sperm motility before capacitation, female tract-derived soluble CD147 interacted with sperm-bound CD147 to induce an acrosome reaction in capacitated sperm. Soluble CD147 treatment restored the acrosome reaction and improved the fertility of sperm from patients with asthenozoospermia. Mechanistically, CD147 promotes sperm motility and acrosome reaction (AR) by eliciting Ca2+ influx through soluble CD147 binding to sperm-bound CD147. Notably, the level of soluble CD147 in seminal plasma was positively correlated with the fertilization rate and pregnancy outcome in infertile couples undergoing in vitro fertilization. Our study has identified a marker for the diagnosis and a therapeutic target for the defective AR capability in asthenozoospermia and a candidate for the prediction of in vitro fertilization outcomes for male infertile patients that facilitates the development of precision medicine in ART.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.