Abstract
Taxol, a microtubule stabilizer with anticancer activity, mimics the actions of lipopolysaccharide (LPS) on murine macrophages in vitro. Recently, it was shown that taxol-induced macrophage activation was inhibited by the LPS antagonist Rhodobacter sphaeroides diphosphoryl lipid A (RsDPLA). To investigate the mechanisms of taxol-induced macrophage activation, the present study focused on the interaction of LPS, RsDPLA, and taxol in the activation of and binding to macrophages. Taxol alone induced murine C3H/He macrophages to secrete tumor necrosis factor alpha (TNF) and to produce nitric oxide (NO) with kinetics similar to that of LPS. Macrophages from LPS-hyporesponsive C3H/HeJ mice, in contrast, did not yield any detectable TNF and NO production in response to LPS or taxol. RsDPLA inhibited taxol-induced TNF and NO production from C3H/He macrophages in a dose-dependent manner. The inhibition by RsDPLA was specific for LPS and taxol in that RsDPLA did not inhibit heat-killed Listeria monocytogenes- or zymosan-induced TNF production. Polymyxin B blocked the inhibitory effect of RsDPLA on taxol-induced TNF production. The inhibitory activity of RsDPLA appeared to be reversible since macrophages still responded to taxol in inducing TNF production after the RsDPLA was washed out with phosphate-buffered saline prior to the addition of taxol. Taxol-induced TNF production was not inhibited by colchicine, vinblastine, or 10-deacetylbaccatine III. A mutant cell line, J7.DEF3, defective in expression of a CD14 antigen, responded equally well to taxol by producing TNF as did the parent J774.1 cells. This suggested that the activation of macrophages by taxol does not require CD14. Taxol-induced TNF production by the mutant cells was also inhibited by RsDPLA. 125I-labeled LPS and 3H-labeled taxol was reported to bind to J774.1 cells predominantly via CD14 and microtubules, respectively. The binding of 125I-labeled LPS to J7.DEF3 cells was about 30 to 40% of that to J774.1 cells. The binding of 125I-LPS to J774.1 cells was inhibited by unlabeled LPS and RsDPLA but not by taxol. On the other hand, 3H-labeled taxol bound to both J774.1 cells and J7.DEF3 cells in similar time- and dose-dependent manners. The binding of [3H]taxol to these cells was inhibited by taxol but not by LPS or RsDPLA. Although the binding studies failed to examine cross competition for binding to macrophages, a possible explanation of these results is that LPS, RsDPLA, and taxol share the same molecule(s) on murine macrophages for their functional receptor(s), which is neither CD14 nor tubulin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.