Abstract

CD100, a member of the semaphorin family, is a costimulatory molecule in adaptive immune responses by switching off CD72's negative signals. However, CD100's potential pathogenetic effects in damaging immune responses remain largely unexplored. We tested the hypothesis that CD100 plays a pathogenetic role in experimental immune complex glomerulonephritis. Daily injection of horse apoferritin for 14 days induced immune complex formation, mesangial proliferative glomerulonephritis and proteinuria in CD100-intact (CD100+/+) BALB/c mice. CD100-deficient (CD100-/-) mice were protected from histological and functional glomerular injury. They exhibited reduced deposition of Igs and C3 in glomeruli, reduced MCP-1 and MIP-2 intrarenal mRNA expression, and diminished glomerular macrophage accumulation. Attenuated glomerular injury was associated with decreased Ag-specific Ig production, reduced CD4+ cell activation and cytokine production. Following Ag injection, CD4+ cell CD100 expression was enhanced and dendritic cell CD86 expression was up-regulated. However, in CD100-/- mice, dendritic cell CD86 (but not CD80) up-regulation was significantly attenuated. Following i.p. immunization, CD86, but not CD80, promotes early Ag-specific TCR-transgenic DO11.10 CD4+ cell proliferation and IFN-gamma production, suggesting that CD100 expression enables full expression of CD86 and consequent CD4+ cell activation. Transfer of CD100+/+ DO11.10 cells into CD100-/- mice resulted in decreased proliferation demonstrating that CD100 from other sources in addition to CD100 from Ag-specific CD4+ cells plays a role in initial T cell proliferation. Although T cell-B cell interactions also may be relevant, these studies demonstrate that CD100 enhances pathogenetic humoral immune responses and promotes the activation of APCs by up-regulating CD86 expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.