Abstract

The chemistry of metal-organic frameworks (MOFs) has the potential to introduce high school and undergraduate students to the fundamental chemical principles of structure and bonding, enhance the development of skills in synthesis and crystal growth, and promote hands-on experience with gas capture and host-guest chemistry of emerging materials with desirable environmental applications. However, most available experiments in the pedagogical literature involving MOFs require laboratory equipment and the use of hazardous chemicals to facilitate crystal growth and the study of structure-property relationships. To remedy this gap in the literature, this paper describes an adapted experimental approach designed specifically for a household environment or low-resource laboratory to grow, activate, and use cyclodextrin-based MOFs for CO2 uptake. This experiment implements a simple procedure that can be carried out safely without access to specialized equipment or laboratory infrastructure. Despite the simplicity of the experimental design, this experiment presents an intellectually engaging opportunity for high school and undergraduate students to explore crystal growth and nucleation, coordination chemistry, and host-guest chemistry as well as green chemistry concepts such as the choice of benign reagents and solvents, and applications of porous materials for gas uptake.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.