Abstract

Cadmium (Cd) exposure can disturb the homeostasis of essential elements. In Arabidopsis thaliana, Cd induces a squamosa promoter binding protein-like 7 (SPL7)-dependent Cu deficiency response. We investigated how Cd induces a Cu deficiency response. The Cu deficiency response consists of the active SPL7 transcription factor binding to GTAC motifs in promoters of among others several Cu transporters, a Cu chaperone, and cupro-miRNAs to regulate Cu homeostasis. We demonstrated that the addition of supplemental Cu to Cd-exposed A. thaliana plants diminished the Cu deficiency response in roots, while it even disappeared in leaves. Exposure of plants to Cd in combination with extra Cu reduced Cd levels in both roots and leaves resulting in an improved cellular oxidative state. Furthermore, we demonstrated a role for phytochelatins (PCs) in the Cd-induced Cu deficiency response, because it was reduced in roots of cad1-3 mutant plants exposed to Cd. In conclusion, a working mechanism is provided in which it is suggested that Cd increases PC levels that can complex both Cd and Cu. This results in cellular Cu deficiency and subsequently the activation of SPL7 and hence the induction of the Cu deficiency response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.