Abstract

The toxic effects of potentially toxic elements have been observed at low concentrations; however, many studies have focused on single-species toxicity testing. Consequently, it is imperative to quantify toxicity at the community level at environmental concentrations. A microcosm approach was employed in conjunction with the Lotka-Volterra model to ascertain the impact of environmentally relevant concentrations of cadmium (Cd) on plankton abundance, community function, and stability. The results demonstrated that Cd led to a reduction in the abundance of Daphnia magna, yet unexpectedly resulted in an increase in the abundance of Brachionus calyciflorus and Paramecium caudatum. Additionally, Cd was observed to impede primary productivity, metabolic capacity and the stability of the planktonic community. Further model analyses revealed that the environmental concentration of Cd directly reduced intrinsic growth rates and intraspecific interactions. In particular, we found that the predation effects of Daphnia magna on Brachionus calyciflorus were significantly weakened. The findings of this study offer quantitative evidence that Cd exposure exerts an indirect influence on the structure and functioning of plankton ecosystems, mediated by alterations in trophic interactions. The findings indicate that the impact of environmental concentrations of potentially toxic elements may be underestimated in single-species experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.