Abstract

Superconducting properties of cadmium doped Cu0.5Tl0.5Ba2Ca2Cu3−yCdyO10−δ (y=0,0.5,1.0,1.5,2.0) samples have been studied using X-ray diffraction, resistivity, ac-susceptibility and FTIR absorption measurements. In X-ray diffraction studies these samples have shown to have tetragonal structure. The zero resistivity critical temperature and magnitude of diamagnetism are suppressed with the increased incorporation of Cd in the final compound. A change in the shape of FTIR absorption spectra, after doping, has shown the incorporation of Cd in the unit cell. A systematic hardening of the apical oxygen modes and softening of the CuO2 planar modes of vibration with increased Cd doping have shown that it is incorporated in the unit cell of Cu0.5Tl0.5Ba2Ca2Cu3−yCdyO10−δ (y=0,0.5,1.0,1.5,2.0) superconductors. The FTIR absorption measurements of these samples have shown that hardening of the apical oxygen modes of types Cu(1)–O(2)–Tl and Cu(1)–O(2)–Cu(2)/Cdy (y=0,0.5,1.0,1.5,2.0) increases with the increase of Cd doping in the samples. A softening of the CuO2 planar oxygen mode Cu(2)–O–Cu(2) is also observed with the increased Cd doping in the final compound. It is most likely that hardening of the apical oxygen modes and the softening of the planar modes of vibration are associated damped harmonic oscillations produced by heavier Cd atoms in the CuO2 planes, which suppress the phonon population from a desired level, reducing the magnitude of superconductivity in the final compound.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.