Abstract

Cd(2+) induces apoptosis of kidney proximal tubule (PT) cells. Mitochondria play a pivotal role in toxic compound-induced apoptosis by releasing cytochrome c. Our objective was to investigate the mechanisms underlying Cd(2+)-induced cytochrome c release from mitochondria in rat PT cells. Using Hoechst 33342 or MTT assay, 10 muM Cd(2+) induced approximately 5-10% apoptosis in PT cells at 6 and 24 h, which was associated with cytochrome c and apoptosis-inducing factor release at 24 h only. This correlated with previously described maximal intracellular Cd(2+) concentrations at 24 h, suggesting that elevated Cd(2+) may directly induce mitochondrial liberation of proapoptotic factors. Indeed, Cd(2+) caused swelling of energized isolated kidney cortex mitochondria (EC(50) approximately 9 muM) and cytochrome c release, which were independent of permeability transition pore (PTP) opening since PTP inhibitors cyclosporin A or bongkrekic acid had no effect. On the contrary, Cd(2+) inhibited swelling and cytochrome c release induced by PTP openers (PO(4)(3-) or H(2)O(2)+Ca(2+)). The mitochondrial Ca(2+) uniporter (MCU) played a key role in mitochondrial damage: 1) MCU inhibitors (La(3+), ruthenium red, Ru360) prevented swelling and cytochrome c release; and 2) ruthenium red attenuated Cd(2+) inhibition of PO(4)(3-)-induced swelling. Using the Cd(2+)-sensitive fluorescent indicator FluoZin-1, Cd(2+) was also taken up by mitoplasts. The aquaporin inhibitor AgNO(3) abolished Cd(2+)-induced swelling of mitoplasts. This could be partially mediated by activation of the mitoplast-enriched water channel aquaporin-8. Thus cytosolic Cd(2+) concentrations exceeding a certain threshold may directly cause mitochondrial damage and apoptotic development by interacting with MCU and water channels in the inner mitochondrial membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.