Abstract

The production of ultrasonic vocalizations (USVs) in neonatal mice is a critical means of communication that is used to elicit maternal care. Alterations in neonatal USV production is also an indicator of neurological deficits. However, USVs have been predominately assessed in inbred animals and are significantly understudied in outbred mice, even though outbred animals better represent the genetic diversity of humans and are used in several neurological disorder models. To determine the reproducibility of USVs across models, we compared male and female CD-1 (outbred) and FVB (inbred) mice on postnatal days (PD) 4, 8, 12, 16, and 20. We found that CD-1 and FVB mice displayed a similar developmental trajectory of USVs. However, CD1 mice emitted more USVs on PD 12 than FVB mice. In addition, FVB mice emitted a longer duration of calls on PD 4 and 8 and a higher overall maximum and minimum frequency of USVs than CD-1 mice. No differences in mean amplitude were found between groups. We also detected numerous significant differences between outbred and inbred mice when comparing each group's call composition. We next assessed the relative variability of mouse vocalizations between groups, finding that outbred mice were less variable than inbred mice. For the spectral and temporal characteristics of the USVs, variability was similar between groups. Altogether, we found that CD-1 outbred mice display a similar, if not lower, degree of variability than FVB inbred mice when assessing neonatal USVs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.