Abstract
The equilibrium geometry of the lowest energy structure of water dimer [(H2O)2] has been investigated using coupled cluster theory. A hierarchy of conventional coupled cluster methods is utilized up to singles doubles triples and quadruples excitations (CCSDTQ). The geometry of (H2O)2 is also optimized using the explicitly correlated coupled cluster singles doubles and perturbative triples [CCSD(T)-F12b] method. Overall, we find that the effect of including excitations beyond CCSD(T) is smaller than inclusion of core-valence correlation and comparable to scalar-relativistic and adiabatic effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.