Abstract
The migration of antigen (Ag)-loading dendritic cells (DCs) from Peyer's patches (PPs) to the draining mesenteric lymph nodes (MLNs) via chemokine receptor 7 (CCR7) is thought to be an important step in the initiation of acquired immunity. Our previous study showed that PPs were indispensable for Ag-specific secretory (S)IgA antibody (Ab) responses against oral recombinant Salmonella (rSalmonella). In this study, we attempted to show direct PP DC migration to MLNs by employing photoconvertible protein transgenic mice and investigated the role of the CCR7 signaling pathway in mucosal IgA induction. Our results demonstrated an actual flux of DCs from PPs to MLNs. The frequency of CCR7+ CD11c+ DCs in MLNs of PP-deficient mice was reduced, suggesting that some PP DCs migrated via CCR7. Immunization of CCR7-/- mice elicited significantly lower levels of Ag-specific SIgA Ab responses, which was associated with diminished formation of the germinal center in PPs. However, increased SIgA Ab production and dissemination of rSalmonella were observed at later time points. These results suggest that, although CCR7 was required for SIgA induction at normal velocity, the CCR7-mediated pathway is not essential for the induction of Ag-specific SIgA Ab responses to rSalmonella.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.