Abstract

Blood vessels are formed during development and tissue repair through a plethora of modifiers that coordinate efficient vessel assembly in various cellular settings. Here we used the yeast 2-hybrid approach and demonstrated a broad affinity of connective tissue growth factor (CCN2/CTGF) to C-terminal cystine knot motifs present in key angiogenic regulators Slit3, von Willebrand factor, platelet-derived growth factor-B, and VEGF-A. Biochemical characterization and histological analysis showed close association of CCN2/CTGF with these regulators in murine angiogenesis models: normal retinal development, oxygen-induced retinopathy (OIR), and Lewis lung carcinomas. CCN2/CTGF and Slit3 proteins worked in concert to promote in vitro angiogenesis and downstream Cdc42 activation. A fragment corresponding to the first three modules of CCN2/CTGF retained this broad binding ability and gained a dominant-negative function. Intravitreal injection of this mutant caused a significant reduction in vascular obliteration and retinal neovascularization vs. saline injection in the OIR model. Knocking down CCN2/CTGF expression by short-hairpin RNA or ectopic expression of this mutant greatly decreased tumorigenesis and angiogenesis. These results provided mechanistic insight into the angiogenic action of CCN2/CTGF and demonstrated the therapeutic potential of dominant-negative CCN2/CTGF mutants for antiangiogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.