Abstract
A laboratory-based experiment has been carried out to understand the cloud condensation nuclei (CCN) activation of carbonaceous aerosols from various sources of emissions such as combustion of wood, cow dung cake, wood-coal burning and diesel generator (DG). The aerosol particles from DG exhaust found to activate completely to cloud condensation nuclei (CCN) at a higher supersaturation (SS) of 0.9% (100.9% RH). However, the CCN activation was faster in carbonaceous aerosol emission from combustion of cow dung cake, where complete CCN activation of particles was observed at 0.3% SS. Wood burning also showed a faster activation at 0.4% SS, whereas for wood-coal burning, the CCN activation has occurred at 0.7% SS. Organic carbon (OC) was found to be the dominant carbon component in all four emission sources compared to elemental carbon (EC) and black carbon (BC). Among all four combustion emissions, wood-burning had the highest OC/EC ratio (8.35) and the lowest was for DG emissions (2.03). BC mass concentration was higher in DG emissions compared to other emissions for the same number of aerosol particles. The non-refractory aerosol chemical composition analysis showed that organic species dominate inorganic species in all the emissions. The study indicates that the carbonaceous aerosols originating from direct emission sources have the potential to get activated as CCN at high supersaturations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.