Abstract

The maximum satisfiability (MAX-SAT) problem, especially the weighted version, has extensive applications. Weighted MAX-SAT instances encoded from real-world applications may be very large, which calls for efficient approximate methods, mainlystochastic local search (SLS) ones. However, few works exist on SLS algorithms for weighted MAX-SAT. In this paper, we propose a new heuristic called CCM for weighted MAX-SAT. The CCM heuristic prefers to select a CCMP variable. By combining CCM withrandom walk, we design a simple SLS algorithm dubbed CCLS for weighted MAX-SAT. The CCLS algorithm is evaluated against a state-of-the-art SLS solver IRoTS and two state-of-the-art complete solvers namely akmaxsat_ls and New WPM2, on a broad range of weighted MAX-SAT instances. Experimental results illustrate that the quality of solution found by CCLS is much better than that found by IRoTS, akmaxsat_ls and New WPM2 on most industrial, crafted and random instances, indicating the efficiency and the robustness of the CCLS algorithm. Furthermore, CCLS is evaluated in the weighted and unweighted MAX-SAT tracks of incomplete solvers in the Eighth Max-SAT Evaluation (Max-SAT 2013), and wins four tracks in this evaluation, illustrating that the performance of CCLS exceeds the current state-of-the-art performance of SLS algorithms on solving MAX-SAT instances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.