Abstract

Atherosclerosis is an arterial inflammatory disease. The circulating level of the C-C chemokine ligand (CCL4) is increased in atherosclerotic patients. This study aimed to investigate whether CCL4 inhibition could retard the progression of atherosclerosis. In ApoE knockout mice, CCL4 antibody treatment reduced circulating interleukin-6 (IL-6) and tumor necrosis factor (TNF)-α levels and improved lipid profiles accompanied with upregulation of the liver X receptor. CCL4 inhibition reduced the atheroma areas and modified the progression of atheroma plaques, which consisted of a thicker fibrous cap with a reduced macrophage content and lower matrix metalloproteinase-2 and -9 expressions, suggesting the stabilization of atheroma plaques. Human coronary endothelial cells (HCAECs) and macrophages were stimulated with TNF-α or oxidized LDL (ox-LDL). The induced expression of E-selectin, vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1) were attenuated by the CCL4 antibody or CCL4 si-RNA. CCL4 inhibition reduced the adhesiveness of HCAECs, which is an early sign of atherogenesis. CCL4 blockade reduced the activity of metalloproteinase-2 and -9 and the production of TNF-α and IL-6 in stimulated macrophages. The effects of CCL4 inhibition on down-regulating adhesion and inflammation proteins were obtained through the nuclear factor kappa B (NFκB) signaling pathway. The direct inhibition of CCL4 stabilized atheroma and reduced endothelial and macrophage activation. CCL4 may be a novel therapeutic target for modulating atherosclerosis.

Highlights

  • Atherosclerosis is a chronic inflammatory disorder of the arteries that leads to cardiovascular morbidity and mortality [1]

  • Serum of IL-6 and tumor necrosis factor (TNF)-α were reduced in the CCL4 antibody-treated groups compared to to the IgGlevels

  • Our observations suggested the potential effects of CCL4 in the vulnerability of atheromas and the progression of atherosclerosis, which may be related to its role in the activation of macrophages, as well as endothelial cells

Read more

Summary

Introduction

Atherosclerosis is a chronic inflammatory disorder of the arteries that leads to cardiovascular morbidity and mortality [1]. Inflammatory cytokines and chemokines play important roles in the pathogenesis and complications of atherosclerosis [2]. Endothelial cells, together with other vascular cells, may produce various inflammatory mediators, including adhesion molecules and cytokines, such as tumor necrosis factor (TNF)-α, interleukin-1, and interleukin-6. These inflammatory mediators can promote the endothelial adhesion of circulating leukocytes, direct the migration of bound leucocytes into the intima, mature the monocytes into macrophages, and enhance the lipid uptake of macrophages to form the

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call