Abstract

Dissociation of chlorofluorocarbons in the atmosphere is a heterogeneous process that takes place mainly on the surface of ice particles. Recently an enhancement of the dissociation rate due to excess electrons has been shown theoretically and correspondingly measured experimentally. Our density functional theory calculations show that CCl(4) dissociates due to an excess electron with an energy gain of 0.8 eV on the ice surface as opposed to in the gas phase. Through the use of ab initio molecular dynamics, an atomistic pathway for this dissociation has been elucidated, this pathway shows the capture of Cl(-) by the ice surface through a partial solvation mechanism, in agreement with recent experimental findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.