Abstract
The underlying inflammation present in chronic airway diseases is orchestrated by increased expression of CC chemokines that selectively recruit leukocyte populations into the pulmonary system. Human CCL26 signals through CC chemokine receptor 3 (CCR3), is dramatically upregulated in challenged asthmatics, and stimulates recruitment of eosinophils (EOSs) and other leukocytes. CCL26 participates in regulation of its receptor CCR3 and modulates expression of a variety of chemokines in alveolar type II cells. Utilizing the A549 alveolar type II epithelial cell culture model, we carried out studies to test the hypothesis that CCL26-siRNA treatment of these cells would ameliorate Th2-driven release of the eotaxins and other CCR3 ligands that would, in turn, decrease recruitment and activation of EOSs. Results demonstrate that CCL26-siRNA treatments decreased interleukin-4-induced CCL26 and CCL24 expression by >70%. CCL26-directed small-interfering RNA (siRNA) treatments significantly decreased release of CCL5 (RANTES), CCL15 (MIP-1δ), CCL8 (MCP-2), and CCL13 (MCP-4). In bioactivity assays it was shown that EOS migration and activation were reduced up to 80% and 90%, respectively, when exposed to supernatants of CCL26-siRNA-treated cells. These results provide evidence that CCL26 may be an appropriate target for development of new therapeutic agents designed to alleviate the underlying inflammation associated with chronic diseases of the airways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.