Abstract

Acquired resistance to EGFR tyrosine kinase inhibitors (EGFR-TKIs) represents a primary cause of treatment failure in non-small cell lung cancer (NSCLC) patients. Chemokine (C-C motif) ligand 2 (CCL2) is recently found to play a pivotal role in determining anti-cancer treatment response. However, the role and mechanism of CCL2 in the development of EGFR-TKIs resistance have not been fully elucidated. In the present study, we focus on the function of CCL2 in the development of acquired resistance to EGFR-TKIs in NSCLC cells. Our results show that CCL2 is aberrantly upregulated in EGFR-TKIs-resistant NSCLC cells and that CCL2 overexpression significantly diminishes sensitivity to EGFR-TKIs. Conversely, CCL2 suppression by CCL2 synthesis inhibitor, bindarit, or CCL2 knockdown can reverse this resistance. CCL2 upregulation can also lead to enhanced migration and increased expressions of epithelial-mesenchymal transition (EMT) markers in EGFR-TKI-resistant NSCLC cells, which could also be rescued by CCL2 knockdown or inhibition. Furthermore, our findings suggest that CCL2-dependent EGFR-TKIs resistance involves the AKT-EMT signaling pathway; inhibition of this pathway effectively attenuates CCL2-induced cell migration and EMT marker expression. In summary, CCL2 promotes the development of acquired EGFR-TKIs resistance and EMT while activating AKT signaling in NSCLC. These insights suggest a promising avenue for the development of CCL2-targeted therapies that prevent EGFR-TKIs resistance in NSCLC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.