Abstract

Filarial parasites have to trespass many barriers to successfully settle within their mammalian host, which is equipped with mechanical borders and complex weaponry of an evolved immune system. However, little is known about mechanisms of early local events in filarial infections. In this study, bone marrow-derived dendritic cells not only upregulated activation markers CD40 and CD80 upon in vitro stimulation with filarial extracts, but also secreted CCL17, a chemokine known to be produced upon microbial challenge. Mice deficient for CCL17 had an up to 4-fold higher worm burden compared with controls by day 10 of infection with the murine filaria Litomosoides sigmodontis. Also, numbers of mast cells (MCs) invading the skin and degranulation were significantly increased, which was associated with enhanced vascular permeability and larval establishment. This phenotype was reverted by inhibition of MC degranulation with disodium cromoglycate or by blockade of histamine. In addition, we showed that CCL17-mediated vascular permeability was dependent on the presence of Wolbachia endosymbionts and TLR2. Our findings reveal that CCL17 controls filarial larval entry by limiting MC-dependent vascular permeability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.