Abstract

This study was performed to identify the possible neural mechanisms and mediators that underlie the gastric mucosal hyperemia evoked by cholecystokinin octapeptide (CCK-8). Gastric mucosal blood flow in anesthetized rats was assessed by the clearance of hydrogen and gastric acid secretion determined in the luminally perfused stomach. The gastric mucosal hyperemic effect of a low dose of CCK-8 (0.04 nmol/min iv infusion for 7 min) was abolished by inhibition of nitric oxide synthesis with NG-nitro-L-arginine methyl ester (15 mg/kg iv) and significantly blunted by defunctionalization of afferent neurons with a neurotoxic dose of capsaicin (125 mg/kg sc). The hyperemic reaction to a high dose of CCK-8 (0.2 nmol/min) was not significantly affected by these pharmacological maneuvers. The vasodilator response to low-dose CCK-8 (0.04 nmol/min) was further analyzed and found to be inhibited by acute bilateral subdiaphragmatic vagotomy, atropine (1 mumol/kg ip), and the antagonistic calcitonin gene-related peptide (CGRP) fragment CGRP-(8-37) (6 nmol/ min ia). Cyclooxygenase inhibition with indomethacin (10 mg/kg ip) was ineffective. The CCK-8-induced increment of gastric acid secretion was not significantly altered by any of these procedures. These results indicate that the gastric vasodilator effect of submaximal doses of CCK-8 is brought about by a vagovagal reflex that involves acetylcholine, CGRP or a related peptide, and nitric oxide as vasodilator messengers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.