7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1016/0196-9781(88)90019-8
Copy DOIJournal: Peptides | Publication Date: Jan 1, 1988 |
Citations: 9 |
Cholecystokinin has been implicated as a satiety factor in mammals because it inhibits feeding through peripheral and central mechanisms. The cellular mechanisms of the central actions of CCK have been difficult to study because of the complex circuitry of the mammalian brain. Navanax is an opisthobranch mollusc with a defined neural network for feeding behavior in which the central effects of CCK can be studied at the cellular level. Here we report the localization of CCK-immunoreactivity in neuronal cell bodies and varicose fibers in the buccal ganglion of Navanax and that CCK-8 inhibits buccal ganglion neurons selectively and at tenth picomolar concentrations: expansion motoneurons responsible for prey capture are strongly inhibited by CCK-8; circumferential motoneurons responsible for swallowing are weakly inhibited by CCK-8. A large cell, cell X, is described which is sensitive to very low doses of CCK-8. These data imply the existence of a CCK-like peptide with transmitter-like actions in the buccal ganglion of Navanax.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.