Abstract

DNA double-strand breaks (DSBs) represent one of the most deleterious forms of DNA damage to a cell. In cancer therapy, induction of cell death by DNA DSBs by ionizing radiation (IR) and certain chemotherapies is thought to mediate the successful elimination of cancer cells. However, cancer cells often evolve to evade the cytotoxicity induced by DNA DSBs, thereby forming the basis for treatment resistance. As such, a better understanding of the DSB DNA damage response (DSB–DDR) pathway will facilitate the design of more effective strategies to overcome chemo- and radioresistance. To identify novel mechanisms that protect cells from the cytotoxic effects of DNA DSBs, we performed a forward genetic screen in zebrafish for recessive mutations that enhance the IR–induced apoptotic response. Here, we describe radiosensitizing mutation 7 (rs7), which causes a severe sensitivity of zebrafish embryonic neurons to IR–induced apoptosis and is required for the proper development of the central nervous system. The rs7 mutation disrupts the coding sequence of ccdc94, a highly conserved gene that has no previous links to the DSB–DDR pathway. We demonstrate that Ccdc94 is a functional member of the Prp19 complex and that genetic knockdown of core members of this complex causes increased sensitivity to IR–induced apoptosis. We further show that Ccdc94 and the Prp19 complex protect cells from IR–induced apoptosis by repressing the expression of p53 mRNA. In summary, we have identified a new gene regulating a dosage-sensitive response to DNA DSBs during embryonic development. Future studies in human cancer cells will determine whether pharmacological inactivation of CCDC94 reduces the threshold of the cancer cell apoptotic response.

Highlights

  • After cells undergo genotoxic stress, multiple DNA-damage response (DDR) pathways are essential for the faithful replication and transmission of chromosomes to subsequent generations

  • To identify cellular components whose targeted therapeutic inactivation could potentially enhance the sensitivity of treatmentresistant cancer cells to DNA–damaging therapies, we have chosen an unbiased genetic approach in live whole zebrafish embryos to identify genes that normally protect cells from the lethal effects of DNA damage

  • Our further analysis revealed that the Ccdc94 protein functions in the Prp19 complex, which is known to regulate gene expression and repair of damaged DNA

Read more

Summary

Introduction

After cells undergo genotoxic stress, multiple DNA-damage response (DDR) pathways are essential for the faithful replication and transmission of chromosomes to subsequent generations. When exposed to excessive amounts of DNA DSBs that overwhelm their repair machinery, cells that are competent to do so will undergo p53dependent apoptosis [2]. Puma induction triggers the activation of Bax and Bak [6] leading to mitochondrial outer membrane permeabilization, release of apoptotic factors including cytochrome C, and activation of the Caspase cascade of proteolytic degradation. Anti-apoptotic members of the Bcl-2 family of proteins, like Bcl-2 and Bcl-xL, can inhibit this process by binding and sequestering Puma (and other BH3-only proteins) to prevent activation of Bax/Bak. mutations that lead to the overexpression of Bcl-2 or to the impairment of the p53 pathway play pivotal roles in the development and progression of cancer, and in the resistance to chemo- and radiotherapy that develops in established tumors [2,7]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.