Abstract
Coiled-coil domain-containing 85C (CCDC85C) is a member of the DIPA family and contains a pair of conserved coiled-coil motifs, which was found to be related to a therapeutic target for colorectal cancer, however, its biological effects require further elucidation. This study aimed to determine the effect of CCDC85C on Colorectal Cancer (CRC) progression and to explore the related mechanism. pLV-PURO plasmid was used to construct CCDC85C-overexpressing cells while CRISPR-CasRx was used to construct CCDC85C knockdown cells. Effects of CCDC85C on cell proliferation, cycle and migration were examined using cell counting kit-8 assay, flow cytometry, wound healing assay and transwell assay. Immunofluorescence staining, immunoprecipitation, Western blot, co-immunoprecipitation and qPCR were performed to explore the mechanism. The overexpression of CCDC85C inhibited the proliferation and migration of HCT-116 and RKO cells in vitro and in vivo, but its knockdown promoted the proliferation of HCT-116 and RKO cells in vitro. Moreover, co-immunoprecipitation experiment confirmed that CCDC85C binding with GSK-3β in RKO cells. Excess CCDC85C promoted phosphorylation and ubiquitination of β-catenin. Our results suggested that CCDC85C binds to GSK-3β to promote its activity and facilitates ubiquitination of β-catenin. β-catenin degradation is responsible for the inhibitory effect of CCDC85C on CRC cell proliferation and migration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.