Abstract
Observation of standard stars is of crucial importance in stellar photometry. We have studied the standard transformation relations of the UBVRI CCD photometric system at the Maidanak Astronomical Observatory in Uzbekistan. All observations were made with the AZT-22 1.5m telescope, SITe 2k CCD or Fairchild 486 CCD, and standard Bessell UBVRI filters from 2003 August to 2007 September. We observed many standard stars around the celestial equator observed by SAAO astronomers. The atmospheric extinction coefficients, photometric zero points, and time variation of photometric zero points of each night were determined. Secondary extinction coefficients and photometric zero points were very stable, while primary extinction coefficients showed a distinct seasonal variation. We also determined the transformation coefficients for each filter. For B, V, R, and I filters, the transformation to the SAAO standard system could be achieved with a straight line or a combination of two straight lines. However, in the case of the U filter and Fairchild 486 CCD combination, a significant non-linear correction term - related to the size of Balmer jump or the strength of the Balmer lines - of up to 0.08 mags was required. We found that our data matched well the SAAO photometry in V, B-V, V-I, and R-I. But in U-B, the difference in zero point was about 3.6 mmag and the scatter was about 0.02 mag. We attribute the relatively large scatter in U-B to the larger error in U of the SAAO photometry. We confirm the mostly small differences between the SAAO standard UBVRI system and the Landolt standard system. We also attempted to interpret the seasonal variation of the atmospheric extinction coefficients in the context of scattering sources in the earth's atmosphere.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.