Abstract

The results of this paper were motivated by a problem of Prikry who asked if it is relatively consistent with the usual axioms of set theory that every nontrivial ccc forcing adds a Cohen or a random real. A natural dividing line is into weakly distributive posets and those which add an unbounded real. In this paper I show that it is relatively consistent that every nonatomic weakly distributive ccc complete Boolean algebra is a Maharam algebra, i.e. carries a continuous strictly positive submeasure. This is deduced from theP-ideal dichotomy, a statement which was first formulated by Abraham and Todorcevic [AT] and later extended by Todorcevic [T]. As an immediate consequence of this and the proof of the consistency of theP-ideal dichotomy we obtain a ZFC result which says that every absolutely ccc weakly distributive complete Boolean algebra is a Maharam algebra. Using a previous theorem of Shelah [Sh1] it also follows that a modified Prikry conjecture holds in the context of Souslin forcing notions, i.e. every nonatomic ccc Souslin forcing either adds a Cohen real or its regular open algebra is a Maharam algebra. Finally, I also show that every nonatomic Maharam algebra adds a splitting real, i.e. a set of integers which neither contains nor is disjoint from an infinite set of integers in the ground model. It follows from the result of [AT] that it is consistent relative to the consistency of ZFC alone that every nonatomic weakly distributive ccc forcing adds a splitting real.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call