Abstract
Recent studies have described the importance of lymphatics in numerous organ-specific physiological and pathological processes. The role of meningeal lymphatics in various neurological and cerebrovascular diseases has been suggested. It has also been shown that these structures develop postnatally and are altered by aging and that the vascular endothelial growth factor C (VEGFC)/ vascular endothelial growth factor receptor 3 (VEGFR3) signaling plays an essential role in the development and maintenance of them. However, the molecular mechanisms governing the development and maintenance of meningeal lymphatics are still poorly characterized. Recent in vitro cell culture-based experiments, and in vivo studies in zebrafish and mouse skin suggest that collagen and calcium binding EGF domains 1 (CCBE1) is involved in the processing of VEGFC. However, the organ-specific role of CCBE1 in developmental lymphangiogenesis and maintenance of lymphatics remains unclear. Here, we aimed to investigate the organ-specific functions of CCBE1 in developmental lymphangiogenesis and maintenance of meningeal lymphatics during aging. We demonstrate that inducible deletion of CCBE1 leads to impaired postnatal development of the meningeal lymphatics and decreased macromolecule drainage to deep cervical lymph nodes. The structural integrity and density of meningeal lymphatics are gradually altered during aging. Furthermore, the meningeal lymphatic structures in adults showed regression after inducible CCBE1 deletion. Collectively, our results indicate the importance of CCBE1-dependent mechanisms not only in the development, but also in the prevention of the age-related regression of meningeal lymphatics. Therefore, targeting CCBE1 may be a good therapeutic strategy to prevent age-related degeneration of meningeal lymphatics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.