Abstract

Maintenance of genomic integrity is an essential cellular function. We previously reported that the transcription factor and tumor suppressor CCAAT/enhancer binding protein δ (C/EBPδ, CEBPD; also known as "NFIL-6β") promotes genomic stability. However, the molecular mechanism was not known. Here, we show that C/EBPδ is a DNA damage-induced gene, which supports survival of mouse bone marrow cells, mouse embryo fibroblasts (MEF), human fibroblasts, and breast tumor cells in response to the DNA cross-linking agent mitomycin C (MMC). Using gene knockout, protein depletion, and overexpression studies, we found that C/EBPδ promotes monoubiquitination of the Fanconi anemia complementation group D2 protein (FANCD2), which is necessary for its function in replication-associated DNA repair. C/EBPδ interacts with FANCD2 and importin 4 (IPO4, also known as "Imp4" and "RanBP4") via separate domains, mediating FANCD2-IPO4 association and augmenting nuclear import of FANCD2, a prerequisite for its monoubiquitination. This study identifies a transcription-independent activity of C/EBPδ in the DNA damage response that may in part underlie its tumor suppressor function. Furthermore, we report a function of IPO4 and nuclear import in the Fanconi anemia pathway of DNA repair.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.