Abstract

Regeneration of skeletal muscle depends on resident muscle stem cells called satellite cells that in healthy, uninjured muscle remain quiescent (noncycling). After activation and expansion of satellite cells postinjury, satellite cell numbers return to uninjured levels and return to mitotic quiescence. Here, we show that the transcription factor CCAAT/enhancer-binding protein beta (C/EBPβ) is required to maintain quiescence of satellite cells in uninjured muscle. We show that C/EBPβ is expressed in quiescent satellite cells in vivo and upregulated in noncycling myoblasts in vitro. Loss of C/EBPβ in satellite cells promotes their premature exit from quiescence resulting in spontaneous activation and differentiation of the stem cell pool. Forced expression of C/EBPβ in myoblasts inhibits proliferation by upregulation of 28 quiescence-associated genes. Furthermore, we find that caveolin-1 is a direct transcriptional target of C/EBPβ and is required for cell cycle exit in muscle satellite cells expressing C/EBPβ. The induction of mitotic quiescence is considered necessary for the long-term maintenance of adult stem cell populations with dysregulation driving increased differentiation of progenitors and depletion of the stem cell pool. Our findings place C/EBPβ as an important transcriptional regulator of muscle satellite cell quiescence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.