Abstract

Common Criteria (CC) and FIPS 140-3 are two popular side channel testing methodologies. Test Vector Leakage Assessment Methodology ( TVLA ), a potential candidate for FIPS, can detect the presence of side-channel information in leakage measurements. However, TVLA results cannot be used to quantify side-channel vulnerability and it is an open problem to derive its relationship with side channel attack success rate ( SR ), i.e., a common metric for CC. In this paper, we extend the TVLA testing beyond its current scope. Precisely, we derive a concrete relationship between TVLA and signal to noise ratio ( SNR ). The linking of the two metrics allows direct computation of success rate ( SR ) from TVLA for given choice of intermediate variable and leakage model and thus unify these popular side channel detection and evaluation metrics. An end-to-end methodology is proposed, which can be easily automated, to derive attack SR starting from TVLA testing. The methodology works under both univariate and multivariate setting and is capable of quantifying any first order leakage. Detailed experiments have been provided using both simulated traces and real traces on SAKURA-GW platform. Additionally, the proposed methodology is benchmarked against previously published attacks on DPA contest v4.0 traces, followed by extension to jitter based countermeasure. The result shows that the proposed methodology provides a quick estimate of SR without performing actual attacks, thus bridging the gap between CC and FIPS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.