Abstract

Abstract Let α denote an infinite cardinal or ∞ which is used to signify no cardinal constraint. This work introduces the concept of an αcc-Baer ring and demonstrates that a commutative semiprime ring A with identity is αcc-Baer if and only if Spec(A) is αcc-disconnected. Moreover, we prove that for each commutative semprime ring A with identity there exists a minimum αcc-Baer ring of quotients, which we call the αcc-Baer hull of A. In addition, we investigate a variety of classical α-Baer ring results within the contexts of αcc-Baer rings and apply our results to produce alternative proofs of some classical results such as A is α-Baer if and only if Spec(A) is α-disconnected. Lastly, we apply our results within the contexts of archimedean f-rings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.