Abstract

We present the CBTree, a new counting-based self-adjusting binary search tree that, like splay trees, moves more frequently accessed nodes closer to the root. After m operations on n items, c of which access some item v, an operation on v traverses a path of length $\mathcal{O}(\log\dfrac{m}{c})$ while performing few if any rotations. In contrast to the traditional self-adjusting splay tree in which each accessed item is moved to the root through a sequence of tree rotations, the CBTree performs rotations infrequently (an amortized subconstant o(1) per operation if m ≫ n), mostly at the bottom of the tree. As a result, the CBTree scales with the amount of concurrency. We adapt the CBTree to a multicore setting and show experimentally that it improves performance compared to existing concurrent search trees on non-uniform access sequences derived from real workloads.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.