Abstract

In mammalian cells, two different messenger ribonucleoproteins (mRNPs) serve as templates for protein synthesis. Newly synthesized mRNPs bound by the cap-binding protein heterodimer CBP80-CBP20 (CBC) initially undergo a pioneer round of translation. One purpose of this round of translation is to ensure the quality of gene expression, as exemplified by nonsense-mediated messenger RNA (mRNA) decay (NMD). NMD largely functions to eliminate mRNAs that prematurely terminate translation, although NMD also contributes to proper gene control, and it targets CBC-bound mRNPs. CBC-bound mRNPs are remodeled to eukaryotic translation initiation factor (eIF)4E-bound mRNPs in steps that (1) are a consequence of the pioneer round of translation and (2) occur independently of translation. Rather than supporting NMD, eIF4E-bound mRNPs provide for the bulk of cellular protein synthesis and are the primary targets of mRNA decay mechanisms that conditionally regulate gene expression. Here, we overview cellular processes by which CBC-bound mRNPs are remodeled to eIF4E-bound mRNPs. We also describe the molecular movements of certain factors during NMD in view of the influential role of CBP80.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.