Abstract

Direct machining steel parts at a hardened state, known as hard turning, offers a number of potential benefits over traditional grinding in some applications. In addition, hard turning has several unique process characteristics, e.g., segmented chip formation and microstructural alterations at the machined surfaces, fundamentally different from conventional turning. Hard turning is, therefore, of a great interest to both the manufacturing industry and research community. Development of superhard materials such as polycrystalline cubic boron nitride (known as CBN) has been a key to enabling hard turning technology. A significant pool of CBN tool wear studies has been surveyed, in an attempt to achieve better processing and tooling applications, and discussed from the tool wear pattern and mechanism perspectives. Although various tool wear mechanisms, or a combination of several, coexist and dominate in CBN turning of hardened steels, it has been suggested that abrasion, adhesion (possibly complicated by tribochemical interactions), and diffusion may primarily govern the CBN tool wear in hard turning. Further, wear rate modeling including one approach developed in a recent study, on both crater and flank wear, is discussed as well. In conclusion, a summary of the CBN tool wear survey and the future work are outlined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.