Abstract

A simple analysis method was developed to determine the fatigue life of a ceramic ball grid array (CBGA) solder joint when exposed to thermal environments. The solder joint consists of a 90Pb/10Sn solder ball with eutectic solder on both top and bottom of the ball. Failure of the solder joint occurs at the eutectic solder. A closed-form solution with the equilibrium of displacements of electronic package assembly was first developed to calculate the solder joint strains during the temperature cycling. In the calculation, an iteration technique was used to obtain a convergent solution in the solder strains, and the elastic material properties were used for all the electronic package assembly components except for the solder materials, which used elastic-plastic properties. A fatigue life prediction model, evolved from an empirically derived formula based upon a modified Coffin-Manson fatigue theory, was then established. CBGA test results, obtained from Motorola, combined with the derived solder strains were used to calibrate the proposed life prediction model. In the model calibration process, the 255- and 304-pin CBGA test results, which were cycled between 0°C and 100°C or −40°C and 125°C, were reasonably well correlated to the calculated values of solder strains. In addition, this calibrated model is remarkably simple compared to the model used in an evaluation by finite element analysis. Therefore, this model could be used and is recommended to serve as an effective tool to preliminarily estimate the CBGA solder joint thermal fatigue life.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.