Abstract
The intelligent recognition technology for ferrography images is one of the important methods for diagnosis fault and state detection of machines. In allusion to these questions for the influences of wear particle images’ blurring, background intricacy, wear particle overlapping and lack of light, and others which lead to be the reason for the difficulty of achieving accurate identification, missed detection, and false detection, an intelligent recognition algorithm for ferrography wear particle based on convolutional block attention module (CBAM) and YOLOv5 is proposed. Firstly, it needs enhancement to improve contrast for ferrography wear particle images and lower background interference by adaptive histogram homogenization algorithm. Then, under the framework of YOLOv5 algorithm, the depthwise separable convolution is added to improve the detection speed of the network, and the detection accuracy of the entire network is improved by optimizing the loss function. Moreover, increase weight ratio on wear particle in images by adding a convolution block CBAM model and increase feature representative capability in detection network with YOLOv5 algorithm detection network, which can improve detection accuracy for wear particle. Finally, compare the algorithm with the three classical homologous series object detection algorithm. The experimental results show that the detection accuracy of the model can reach 96.7%, and the detection speed is 32 FPS for the images with a resolution of 1280 × 720 . It can be developed and applied to the fault diagnosis and condition monitoring of mechanical equipment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.