Abstract
The molecular processes that underlie long-term memory formation involve signaling pathway activation by neurotransmitter release, which induces the expression of immediate early genes, such as Zif268, having a key role in memory formation. In this work, we show that the cannabinoid CB1 receptor signaling is necessary for the effects of dexamethasone on the behavioral response in an inhibitory avoidance task, on dexamethasone-induced ERK phosphorylation, and on dexamethasone-dependent Zif268 expression. Furthermore, we provide primary evidence for the mechanism responsible for this crosstalk between cannabinoid and glucocorticoid-mediated signaling pathways, showing that dexamethasone regulates endocannabinoid metabolism by inhibiting the activity of the Fatty acid amide hydrolase (FAAH), an integral membrane enzyme that hydrolyzes endocannabinoids and related amidated signaling lipids. Our results provide novel evidence regarding the role of the endocannabinoid system, and in particular of the CB1 receptor, as a mediator of the effects of glucocorticoids on the consolidation of aversive memories.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.