Abstract

There is strong evidence that blocking CB 1 receptors may reduce alcohol intake in alcohol-dependent individuals. However, there is still limited evidence that CB 1 receptor antagonists may also be beneficial in the attenuation of alcohol withdrawal syndrome, even though alcohol withdrawal appears to be milder in CB 1 receptor knockout mice. Here we have examined whether the CB 1 receptor antagonist rimonabant (SR141716) can alleviate the behavioral symptoms and revert the neurochemical imbalance elicited by a 3-h interruption of chronic alcohol exposure (7.2% in the drinking water for 10 days) in male Wistar rats. Administration of rimonabant attenuated the strong anxiogenic traits of the animals that developed when regular alcohol intake was interrupted. This may reflect the correction of the GABA/glutamate imbalances developed by the animals that received rimonabant in various brain regions involved in emotional (e.g. prefrontal cortex) and motor (e.g. caudate-putamen and globus pallidus) responses. In addition, rimonabant also affected the dopamine deficits generated by alcohol abstinence in the amygdala and ventral-tegmental area, albeit to a lesser extent. However, this antagonist was unable to correct the impairment caused by alcohol abstinence in serotonin and neuropeptide Y. The endocannabinoid activity in the brain of alcohol-abstinent rats indicated that the behavioral and neurochemical improvements caused by rimonabant were not related to the attenuation of a possible increase in this activity generated by alcohol withdrawal. Conversely, the density of CB 1 receptors was reduced in alcohol-abstinent animals (e.g. globus pallidus, substantia nigra), as were the levels of endocannabinoids and related N-acylethanolamines (e.g. amygdala, caudate-putamen). Thus, rimonabant possibly enhances an endogenous response generated by interrupting the regular use of alcohol. In summary, rimonabant might attenuate withdrawal symptoms associated with alcohol abstinence, an effect that was presumably due to the normalization of GABA and glutamate, and to a lesser extent, dopamine transmission in emotion- and motor-related areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.