Abstract

Le A be a matrix of even dimension which is anti-symmetric after deletion of its rth row and column and let R, C be the anti-symmetric matrices formed by modifying the rth row and column of A, respectively. In this case, Cayley's (1857) theorem states that det A = Pf R · Pf C, where Pf R denotes the Pfaffian of R. A consequence of this theorem is an explicit factorisation of the standard determinantal representation of the denominator polynomial of a vector Padé approximant. We give a succinct, modern proof of Cayley's theorem. Then we prove a novel vector inequality arising from investigation of one such Pfaffian, and conjecture that all such Pfaffians are nonnegative.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.