Abstract
This paper looks at the class of groups admitting normal forms for which the right multiplication by a group element is computed in linear time on a multi-tape Turing machine. We show that the groups $\mathbb{Z}_2 \wr \mathbb{Z}^2$, $\mathbb{Z}_2 \wr \mathbb{F}_2$ and Thompson's group $F$ have normal forms for which the right multiplication by a group element is computed in linear time on a $2$-tape Turing machine. This refines the results previously established by Elder and the authors that these groups are Cayley polynomial-time computable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.