Abstract

Rotary blood pumps are a promising treatment approach for patients with a total cavopulmonary connection and a failing cardiovascular system. The aim of this study was to investigate the hemodynamic effects of cavopulmonary support using a numerical model with closed-loop baroreflex and exercise mechanisms. A numerical model of the univentricular cardiovascular system was developed, mimicking the hemodynamics during rest and exercise. Rotary blood pumps with different hydraulic pump characteristics (flat vs steep pressure-flow relationships) were investigated in the cavopulmonary position. Furthermore, two support modes-a constant speed setting and a physiologically controlled speed-were examined. Hemodynamics without rotary blood pumps were achieved with less than 10% deviation from reported values during rest and exercise. Rotary blood pumps at constant speed improve the hemodynamics at rest, however, they constitute a hydraulic resistance during light (steep characteristics) or moderate (flat characteristics) exercise. In contrast, physiologic control increases cardiac output (moderate exercise: 8.2 vs 7.4 L/min) and reduces sympathetic activation (heart rate at moderate exercise: 111 vs 123 bpm). In this simulation study, the necessity of an automatically controlled rotary blood pump in the cavopulmonary position was shown. A pump at constant speed might constitute an additional resistance to venous return during physical activity. Therefore, a physiologic control algorithm based on the pressure difference between the caval veins and the atrial pressure is proposed to improve hemodynamics, especially during physical activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.